Close
All Categories

    What Does Stress, Strain, and Modulus of Elasticity Mean and How Does it Relate to Carbon Fiber?

    Modulus of Elasticity a.k.a. "Young’s Modulus" or "Tensile Modulus"

    Modulus of Elasticity is the measurement of a material's resistance to elastic (non-permanent) deformation, under applied stress, on a certain axis.  This can also be interpreted as the "stiffness" of a material. The factors determining this measurement are the stress applied to the material divided by the strain exhibited.  "E" is the symbol for this measurement.

    Stress

    Stress  σ = F / A  
    F stands for applied force, measured in Newtons or pounds (N or lb), and A represents the stressed area of the material (m2 or in2). The resulting measurement, σ, is N/m2 or lb/in2.

    Strain

    Strain  ε = dL / L 
    dL is the offset (change) of the material's length along the axis measured (m or in). L is the original measurement of the material. The measurement units cancel out, so Strain is a unitless measurement.

    Modulus of Elasticity

    Modulus of Elasticity  E = (F/A) ÷ (dL/L) =  σ÷ε
    Since Strain is a unitless measurement, the unit used for E is the same as that used for stress. However, N/m2 = Pascal (Pa), and often E is reported in Gigapascals (GPa = Pa x109). Alternatively, lb/in2 = psi and E is then expressed in Megapounds/square inch (Mpsi or Msi = psi x106) or Kilapounds/square inch (Kpsi or Ksi = psi x103).

    The Diving Board

    Think of a wooden diving board. You’re standing on one end, and it’s supported on the other end. As the board flexes under your weight, the shape changes. If you measure the differences using a variety of weights, the data points will create a slope, which creates your Modulus of Elasticity. The rigidity of the diving board depends on the type of wood used. Douglas Fir has a Modulus of Elasticity of 13 GPa (1.9 Msi). Oak has an E value of 11 GPa (1.6 Msi), and pine is 9 GPa (1.3 Msi), which is more flexible than Douglas Fir. Modern-day diving boards are made of aircraft-grade aluminum 69 GPa (10 Msi).

    Carbon Fiber

    So how does that relate to carbon fiber? Carbon fiber technology is an amazing breakthrough in lightweight, rigid materials. Items formerly made with standard building materials can be manufactured lighter and stronger with carbon fibers. Obviously a diving board needs to flex; one made of carbon fiber (228 GPa, 33 Msi) would not be practical. However, a drone's propeller or an enclosure for sensitive equipment requires a rigid, lightweight material.  When every ounce or gram counts, carbon fiber materials can make the difference between staying grounded and taking off. Unmanned aerial vehicles (UAVs) and larger aircraft can benefit from carbon fiber's weight-saving properties and sleek look. Bicycle manufacturers can greatly increase their products' strength and durability while decreasing the weight. Manufacturers can make stylish, modern, lighter weight, and longer-lasting equipment and furniture. Lightweight, unmanned vehicles can work where no human can because of either weight restrictions or stress on the body (E value of bone is 76 GPa (11 Msi)). With carbon fibers, you get a Modulus of Elasticity starting around 228 GPa (33 Msi), while some high rigidity carbon fiber materials have E values of 760 GPa (110 Msi).

    Other Applications

    What else can be achieved with carbon fiber?  Sound engineers can use the strength, durability, and natural resonance to make instruments and sound equipment more responsive and lighter weight. Aerospace engineers can reduce tool weights by 50% or more by substituting carbon fibers. Medical imaging equipment benefits from carbon fiber’s sufficient strength and stiffness; maintaining critical dimensions under load without breaking down over time, even after high doses of x-ray and gamma radiation. The rigidity of carbon fiber, coupled with a weight of less than half that of aluminum, allows engineers to create the innovations that will forge the next generation in consumer products and manufacturing.